FISH

There are two ways of fixing parasites for IF or FISH. Either the cells are settled onto non-silanized coverslips (Fisher 12mm, #15) and then fixed (faster but harsher), or the cells are fixed in suspension and then settled onto silanized coverlips (probably better to preserve the 3D-structure of the cell, for co-localization studies, deconvolution with Delta-Vision, etc).

Spinning followed by fixation

- 1. Spin cells gently at RT for 3 min at 2,000 rpm.
- 2. Rinse with PBS (procyclics) or TDB (bloodstream forms)
- 3. Spin as before and transfer cells to an Eppendorf tube.
- 4. Resuspend in PBS or TDB to $> 2x10^7$ cells/ml.
- 5. Fix cells for 10 min at RT by adding an equal volume of 4% formaldehyde in PBS or TDB. The parasite concentration at the end should be > $1x10^7$ cells/ml.
- 6. Place coverslips on a Whatman paper that fits the swing bucket of the centrifuge.
- 7. Spot 50 μ l (0.5x10⁶ cells) of cell suspension onto glass coverslips.
- 8. Spin coverslips at 4°C for 4–5min at ~2,000 rpm.

Fixation in suspension followed by settling onto silanized coverslips

- 9. Spin cells gently at RT for 3 min at 2,000 rpm. Discard supernatant and resuspend cells in HMI-9 in order to have > $2x10^7$ cells/ml. Transfer cells to Eppendorf tube.
- 10. ALTERNATIVE METHOD: Wash cells with PBS (procyclics) or TDB (bloodstream forms). Spin at RT for 3 min at 2000 rpm. Discard supernatant and resuspend cells in PBS or TDB in order to have $> 2x10^7$ cells/ml. Transfer cells to Eppendorf tube.
- 11. Fix cells for 10 min at RT by adding an equal volume of 4% formaldehyde in PBS or TDB. The parasite concentration at the end should be > $1x10^7$ cells/ml. *If the duration of fixation is critical, you can stop fixation by adding glycine.*
- 12. Spin cells as before to wash away formaldehyde (*this step is essential otherwise cells will not adhere efficiently to the silanized coverslip*). Resuspend cells in PBS at > $1x10^7$ cells/ml.
- 13. Spot 50–100 μ l (0.5-1x10⁶ cells) of suspended cells on each silanized coverslip
- 14. Allow 5–15 min for cells to settle (by gravity).
- 15. Wash cells 4x for 5 min with PBS.
- 16. We can store coverslips at this stage for at least 2 days.

Permeabilization

- 1. Permeabilize cells for EXACTLY 5 min in 0.1% (PF) or 0.2% (BF) NP40 in PBS. *Time may have to be adjusted depending on your antigen or DNA/RNA target.*
- 2. Rinse 2-3x with PBS.

Hybridization

- 1. Boil water; turn on one water-bath to 70° C and another to 37° C (or 50° C).
- 2. Prepare 20 ml of 70% Formamide in 2 x SSC and place it at 70°C.
- 3. Prepare 20 ml of 2x SSC and place it at 50°C
- 4. Prepare probe/hybridization mix on ice as follows (volumes are per coverslip):
 - a. 2.4 µl Herring sperm DNA (0.2 mg/mL)
 - b. $2.4 \mu l$ Yeast tRNA (0.2 mg/mL)
 - c. 7.2 μl probe (1 μg/mL) (1 μL of 50-bp repeat oligo probe; 7.2 μL telomere probe)
 - d. 48.0 μl Hybridization Mix (for oligo probes use Hyb. mix containing only 30% formamide).
- 5. For DNA probe, denature in hyb mix 100°C for 5-10 min.
- 6. Meanwhile, denature DNA from cells by placing coverslips in 70°C-pre-warmed 70% formamide / 2 x SSC for 5 min at 70°C (in 6-well plates; they float).
- 7. Aspirate formamide solution
- 8. Rinse briefly in pre-heated 2x SSC (50°C)
- 9. The probe/hyb mix should be denatured by now. Spot (50 μL) immediately onto parafilm in dark-humid chamber.
- 10. Remove excess liquid from coverslips and place them on probe/hyb mix spots (cells facing down!)
- 11. Incubate overnight at 37°C. Check temperature with thermometer!
- 12. Temperature depends on type of probe: TEL = 50°C; 5s-DNA, MC177, 50bprepeats = 37°C.

Washings (24-well plate)

- 1. Defrost PBG and store it on ice. Pre-heat formamide / 2xSSC to 37°C (formamide % should be identical to the one used for O/N hybridization)
- 2. Transfer coverslips to new 24-well plate containing same % of formamide / 2xSSC
- 3. Incubate for 5 min at hybridization temperature (same oven as for hybridization)
- 4. Repeat wash, using vacuum pump to aspirate washing solution
- 5. Wash at RT as follows:
- 6. 2 x 5 min, 2x SSC
- 7. 2 x 5 min, 1x SSC
- 8. 2 x 5 min, 0.1x SSC
- 9. Wash in PBS
- 10. Block twice in PBG for ≥ 10 min.

Developing reaction (24-well plate)

Remember:

TEL PCR fragment: labeled with DIG-dUTP = develop with α -DIG (sheep), then **FITC-\alpha-sheep**

50-bp repeat oligo: labeled with Biotin at 5⁻ end = develop with ExtrAvidin-Cy3

- 1. Prepare dilutions in PBG as follows (use $100-200 \mu l / coverslip$):
 - a. 1:1000 Sheep anti-DIG (Stock: antibody box; freezer in Joanna's room)
 - b. 1:1000 ExtrAvidin-Cy3 (SIGMA E4142) (Stock : White Box, cold-room)
- 2. Incubate for 1–2 h at RT (or O/N at 4 °C) with primary Ab diluted appropriately in PBG
- 3. Wash 6 x 5 min with PBG
- Incubate in secondary Ab (FITC donkey anti-sheep, diluted 1:200 in PBG) for ≥ 1 h at RT
- 5. Wash 4 x 5 minutes with PBG
- 6. Rinse with PBS
- 7. DAPI stain for ~ 1 min with 1000x stock diluted in PBS
- 8. Meanwhile, label slides.
- 9. Rinse coverslips with PBS.
- 10. Place glycerol at RT
- Drop carefully to avoid bubbles 20 μl of glycerol containing p-phenylene diamine OR vectashield. Vectashield is not good for 3D-reconstruction, as it contains little "bubbles" that act as microlenses.
- 12. Remove excess PBS from coverslip and mount cover slips on glycerol (cells facing down!). 2 coverslips / slide is ideal but 3-4 is possible.
- 13. Seal with plain nail polish and examine.
- 14. Stores slides at -20° C.

Solutions

10X PBS

10x stock solution, 1 liter: 80 g NaCl 2 g KCl 11.5 g Na₂HPO₄.7H₂O 2 g KH₂PO₄

PBG=PBS plus

0.2% (w/v) cold water fish gelatin (Sigma G-7765) 0.5% (w/v) BSA (Sigma A-2153) Store in 50 ml aliquots at -20°C.

DAPI

Lab stock: dissolve at 5 mg/ml 4',6-diamino-2-phenylindole (Sigma D-9542) in ddH2O. Store at -20°C. Individual stocks: Dilute from lab stock to 0.5 mg/ml. Stable at 4°C.

Embedding medium:

Dissolve 20 mg p-phenylene diamine (Sigma P-6001) in 2 ml 10xPBS by vortexing. Immediately add 18 ml glycerol, mix carefully without creating air bubbles: do not vortex. Store in 1ml aliquots at -70°C. The solution should be colorless; discard when it turns yellow or brown.

Formaldehyde (2–4%)

Dilute from 37% stock

TDB

		5x concentrate 1x working solution	
0.005	M KCl	1.86 g/l	0.37 g/l
0.080	NaCl	23.4	4.68
0.001	MgSO ₄ .7H ₂ O	1.24	0.25
0.020	Na ₂ HPO ₄	14.2	2.84
0.002	NaH ₂ PO ₄ .2H ₂ O	1.55	0.31
0.020	glucose	18.0	3.60

Dissolve $MgSO_4.7H_2O$ separately and add slowly, with stirring, once the other components have been dissolved and made up almost to final volume. Check pH ONLY AFTER IT IS DILUTED TO 1X — it should be 7.7 and NOT need adjustment! If the pH is wrong this indicates that components were incorrect or misweighed, etc). Bottle 5x concentrate in exactly 50 ml amounts; 1x working solution in 100 ml amounts and store in freezer.

To generate a working solution from 5x concentrate, thaw concentrate and warm to around 50° C; mix and check that everything has re-dissolved. Make up to 250 ml using H_2O . Check pH. Store 4° C.

Hybridization mix

1 ml Hyb I 1 ml Hyb II 5 ml formamide 1 ml Hyb III

mix, store at -20 °C in $\sim 500 \mu l$ aliquots

Hyb I	50% dextran sulfate (Sigma D-6001) in water. (Dissolve by stirring and heating). Store at -20 °C		
Hyb II	3% BSA (Sigma A-2153) 3% ficoll (Sigma F-9378) 3% polyvinylpyrrolidone (P-2307) in water. Store at -20 °C.		
Hyb III	20X SSC (autoclaved)		