Short communication

Virulence of *Trypanosoma brucei* strain 427 is not affected by the absence of glycosylphosphatidylinositol phospholipase C

Simone Leal a, Alvaro Acosta-Serrano b,1, Yasu S. Morita b,2, Paul T. Englund b, Ulrike Böhme a, George A.M. Cross a,*3

a Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
b Department of Biological Chemistry, Johns Hopkins University Medical School, Baltimore, MD 21205, USA

Received 28 November 2000; accepted 2 March 2001

Keywords: Glycosylphosphatidylinositol phospholipase C; *Trypanosoma brucei*; Transfection method; Virulence; Null-mutant; Differentiation

The infectious stages of *Trypanosoma brucei* are covered by a homogenous coat consisting of 10 million molecules of a glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) (for a review, see [1]). The bloodstream forms express a phospholipase C (GPIPLC), which has a predilection for cleaving the GPI anchor of cell-surface VSG when trypanosomes are disrupted (for a review, see [2]). During osmotic lysis, GPIPLC releases all of the cell-surface VSG within 5 min at 30°C, providing a convenient method for purifying soluble VSG (sVSG) [3]. GPIPLC also appears to be responsible for much of the degradation of the GPI precursor glycolipid A’ that occurs during lipid remodeling in vitro [4]. The normal cellular function of the GPIPLC is unknown, however, despite intensive study. The enzyme does not appear to be essential for normal differentiation to procyclic forms [5], when the surface VSG is released by proteolytic cleavage [6,7] and replaced by a small family of GPIPLC-resistant [8] GPI-anchored surface proteins that are characterized by glutamate–proline-rich repeats [9–12]. On the other hand, it has been reported that GPIPLC is necessary for the accelerated differentiation of pleomorphic trypanosomes that is induced by mild acid stress [18]. In this brief report, we document the generation of a GPIPLC null-mutant in the virulent 427 strain of *T. brucei*. These cells, which retain the T7 RNA polymerase (T7RNAP) and Tet repressor (TETR) cassettes (the genotype designation is Δgpiplc::T7RNAP–NEO/ Δgpiplc::P105Δ7TETR–HYG), will be useful for further biochemical and genetic studies of GPI synthesis and function, and for purification of GPI-linked proteins. The results also illustrate several issues concerning the use of genetically modified lines of *T. brucei*.

There have been three reports of GPIPLC disruption. In the first, it was found that a GPIPLC null mutant was not impaired in its ability to complete the natural life cycle, but the moderate virulence of this *T. brucei* line was further reduced [5]. A GPIPLC null mutation in a more virulent monomorphic cell line of *T. b. rhodesiense* also reduced its virulence in mice [13]. In our previous work, for reasons that could only be speculated upon, we were unable to obtain a null mutant in the highly virulent 427 line of *T. brucei*, although a conditional null mutant, expressing exceed-
ingly low levels of GPIPLC, retained undiminished virulence in mice [14]. Virulent strains have a population doubling time of about 6 h: an inoculum of 5 × 10⁵ trypanosomes overwhelms a mouse within 72 h. Infections with less virulent strains can persist for several weeks.

Stabilates (reference number Rockefeller University Molecular Parasitology (RUMP) 517) of blood from mice infected with the conditional null mutant [14] were provided to several laboratories wishing to study GPI pathways without the added complication of the presence of large amounts of a GPI-degrading enzyme. In the Englund laboratory, a sample of RUMP 517 was thawed and mixed with 2 ml of fresh HMI-9 medium [15] containing penicillin and streptomycin. The trypanosomes were not separated from red cells and the culture was left for 2 d at 37°C, when the cells grew to a density of about 2 × 10⁶ ml⁻¹. Cells were diluted 1:1 and then, for 10 days, they were diluted 1:1 on alternate days, keeping them below 2 × 10⁶ ml⁻¹. As they began to grow faster, during the next 2 weeks, the dilution rate was gradually increased to 1:20. After 6 weeks, rats were infected and stabilates prepared. After another 6 weeks of continuous culturing in vitro, GPIPLC activity was undetectable in lysates prepared from cells that had been incubated for 26 h with 0.1, 1, or 10 μg ml⁻¹ tetracycline, using [³H]myristate-labeled VSG as a substrate. When tested after another 2.5 weeks, all of these cells were killed within 1 day by 2.5 μg ml⁻¹ phleomycin. These results suggested that the pLEW100-based [16] cassette containing the BLE gene coupled to the ectopic tetracycline-inducible GPIPLC [14] had been spontaneously eliminated from the conditional null mutant cells during prolonged cultivation in the absence of phleomycin, G418 and hygromycin. One of the stabilates that were prepared from the cells that were grown in rats after 6 weeks of cultivation in the absence of selection was transferred to culture in the presence of phleomycin. These cells were resistant to phleomycin and GPIPLC was inducible by tetracycline, as expected, suggesting that at least some of the cells that were cultured for 6 weeks in the absence of phleomycin maintained the ectopic copy, but none remained after 12 weeks.

We isolated three clones from the 12 week cultured cells and characterized them. All had the same genotype and phenotype, with respect to GPIPLC and drug resistance. A Southern blot of purified DNA digested with six different restriction enzymes showed no band that hybridized to a GPIPLC coding region probe (data not shown). Cells remained resistant to G418 and hygromycin, owing to the NEO and HYG genes that are coupled to T7RNAP and TETR, respectively [14], but died in the presence of phleomycin (2.5 μg ml⁻¹). Northern analysis (data not shown) and western blotting showed that the three clones continued to express VSG 221, as did the parental line. Lack of GPIPLC activity was demonstrated by the failure of these clones to release VSG under standard assay conditions (data for one of the clones are shown in Fig. 1, panel A).

Growth of the null mutant in mice was not noticeably different from the wild type: lethal parasitaemias of > 10⁹ ml⁻¹ were reached in 72 h with a standard inoculum (5 × 10⁵ trypanosomes). Infected mouse blood was frozen (stablate reference number RUMP 528). There was no significant difference in the course of longer-term infections, in mice inoculated with ~ 5 trypanosomes. Wild-type, GPIPLC single-allele knockout, and GPIPLC null mutants achieved fatal parasitaemias in 12–14 days, which is typical for T. brucei strain 427. We were interested to determine whether cultured null-mutant cells would differentiate to procyclic forms in vitro. They did not. The parental cells differentiated almost simultaneously and will multiply indefinitely as procyclic forms. We then restored GPIPLC by stably transfecting the null mutant with the same regulated pLEW100-based ectopic cassette, pCO19, that was originally used to create the conditional null mutant [14]. Stably transformed phleomycin-resistant clones were obtained, which expressed GPIPLC after tetracycline induction (data for one of the clones is shown in Fig. 1, panels B and C). In several experiments, whether maintained in the presence or absence of tetracycline, these clones were also unable...
to differentiate to procyclic forms under standard conditions, using DTM medium and cis-aconitate [17]. They died within 48 h. We attribute this result to the unexplained variation in differentiation ability that we see among different clones of the 427 strain of *T. brucei*, rather than to the genetic manipulations that were performed.

These results are significant for two reasons. Firstly, they provide virulent *GPIPLC* null-mutant trypanosomes that will be useful for further biochemical and genetic studies of GPI synthesis and function. Secondly, they emphasize that, in the absence of intrinsic selection for an essential gene, a pLEW100 cassette cloned into a rDNA locus can be spontaneously lost, presumably by homologous recombination among rDNA genes, of which there appear to be 15–20 copies in *T. brucei* 427 [19], distributed among chromosomes I, II, III and VIII [20]. Loss of the cassette from individual cells might be expected, in the absence of selection. What was more surprising is that the deletion presumably provided a slight selective advantage that allowed the null-mutant cells to slowly outgrow their parents. We can only speculate on possible reasons for this, but the most obvious possibility is that the introduction of the T7 promoter into some rDNA loci could be deleterious, perhaps due to transcription extending into regions downstream of the insertion site [21]. Unlike pLEW82 [21], pLEW100 [16] does not contain a downstream T7RNAP transcription terminator. The possibility that pLEW100 is only tolerated in a minority of rDNA loci could also explain why it is generally more difficult to obtain transfectants with this cassette, in contrast to pLEW82 (unpublished observations of several investigators). Finally, we wish to note that another laboratory was recently able to directly create a *GPIPLC* null mutant of *T. brucei* 427, using constructs previously described [5], without loss of virulence or the intermediate use of an ectopic copy (Mark Carrington, personal communication)

Acknowledgements

This work was supported by grants AI21729 (GAMC) and AI21334 (PTE) from the National Institutes of Health and by the Deutscher Akademischer Austauschdienst (UB).

References