The major surface antigen of the mammalian bloodstream form of Trypanosoma brucei, the variant surface glycoprotein (VSG), is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. The VSG anchor is susceptible to phosphatidylinositol-specific phospholipase C (PI- PLC). Candidate precursor glycolipids, P2 and P3, which are PI-PLC- sensitive and -resistant respectively, have been characterized in the bloodstream stage. In the insect midgut stage, the major surface glycoprotein, procyclic acidic repetitive glycoprotein, is also GPI-anchored but is resistant to PI-PLC. To determine how the structure of the GPI anchor is altered at different life stages, we characterized candidate GPI molecules in procyclic T. brucei. The structure of a major procyclic GPI, PP1, is ethanolamine-PO4-Man-alpha-1- 2Man-alpha-1-6Man-alpha-1-GlcN-acylin ositol, linked to lysophosphatidic acid. The inositol can be labeled with [3H]palmitic acid, and the glyceride with [3H]stearic acid. We have also found that all detectable ethanolamine- containing GPIs from procyclic cells contain acylinositol and are resistant to cleavage by PI-PLC. This suggests that the procyclic acidic repetitive glycoprotein GPI anchor structure differs from that of the VSG by virtue of the structures of the GPIs available for transfer.